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SECTION I

INTRODUCTION

This first annual technical report documents the current

status and accomplishments of the research performed by the

University of Dayton for the Air Force Office of Scientific

Research (AFOSR), Fast Algorithms Initiative. The research

documented herein was carried out by the University of Dayton

Research Institute (UDRI) as the prime contractor and by the

University of Pittsburgh Institute for Computational Mathematics

and Applications (ICMA) as the subcontractor.

1.1 BACKGROUND

The so-called turbulence problem In fluid mechanics remains

unsolved, but not for a lack of theoretical interest or of

practical importance. From the theoretical viewpoint, the

understanding and prediction of turbulent shear flows from first

principles have remained elusive and continue to provide

challenging problems in fluid dynamics, computational physics and

mathematics, and numerical algorithm development. From a

practical viewpoint, many research and development problems of

interest to the Air Force, ranging from combustion In jet engines

and rocket motors to aerodynamics of wings and surfaces, give

rise to the transport of mass, momentum, and energy that are

predominantly governed by turbulent flows, thereby necessitating

their understanding and prediction.

It is generally accepted that fluid mechanical turbulence

begins in an erstwhile laminar flowfleld as the onset and growth

of hydrodynamic instabilities. According to this traditional

viewpoint, as the energy driving the macroscopic instabilities

cascades through higher and higher wavenumbers, culminating in

what is commonly referred to as the fully developed turbulence,
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the overall flowfield is characterized by the interaction of a

very large number of disparate length and time scales. This

viewpoint has led to the predictive approach which seeks the

evolution of turbulence from the solution of the time-dependent

Navler-Stokes equations. If these equations can be solved

exactly for the entire range of the time and length scales

prevailing in a realistic flowfield, then the resulting solutions

explicitly describe and predict the turbulent flow.

Unfortunately, this approach has been thwarted by the enormous

computing requirements imposed by the time-dependent,

multidimensional Navier-Stokes equations in simulating a

realistic flow, which requirements are well beyond the

capabilities of today's largest and fastest computers.

The only feasible approach for turbulent flow predictions at

present comprises the direct computation of the complete

equations on a coarsely resolved grid (dictated by the available

computing resources) for describing the "large"-scale motions,

the development of model(s) for the "small" subgrid-scale (SGS)

turbulent mixing, and the proper coupling of the SGS modeling to

the large-eddy simulation (LES). Indeed, the prospects for

economical and accurate LES of turbulent shear flows have been

greatly enhanced with the increasing availability of vector

computers of greater and greater size and speed, the potential

for major improvements in the development of efficient numerical

algorithms, and the considerable scope for efficient matching of

these algorithms to emerging computer architectures.

1.2 SCOPE AND OBJECTIVES

The overall goal of this UDRI-ICMA joint research Is the

computational investigation of the turbulent mixing layers of

several prototype circular-jet configurations. Initial attention

is directed at an examination of a single free jet expanding into

a quiescent environment, with emphasis on the development of
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suitable SOS turbulence models and the computation of large-scale

motions. Specific areas addressed during the first year include

the following:

* Investigation of the axisymmetric mixing layer of

circular jets with LES and SOS modeling.

* Investigation and analysis of variable reduction

algorithms, such as the dual variable method.

* Investigation and analysis of numerical algorithms based

on weighted combinations of stable and unstable schemes.

Investigation of vectorization of solution algorithms and

its efficient implementation.

Our research to date has entailed a critical review and

assessment of the LES and SOS modeling procedures prior to the

selection of the specific avenues that have been explored.

Furthermore, the research has involved several interdependent

phases consisting of a number of tasks. Some of these tasks are

independently conducted by UDRI (e.g., SOS turbulence modeling)

and by ICMA (e.g., modification and adaptation of an existing

two-dimensional procedure) and some have entailed joint efforts

(e.g., boundary-condition modifications and algebraic-turbulence-

model incorporation and testing). These are discussed in the

next section.

1.3 OUTLINE OF REPORT

Section II discusses our accomplishments to date, and gives

the current status of our research. Section III presents the

documentation from research sponsored under this program. The

research personnel at UDRI and ICKA supported by this program are

shown in Section IV.
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SECTION II

STATUS OF RESEARCH

There has been significant progress in achieving the

research objectives outlined in the previous section. A brief

summary of our accomplishments to date is presented below.

2.1 MATHEMATICAL DESCRIPTION

The prediction of jet turbulence in the present research has

adopted the traditional viewpoint that it is based upon the

solutions of the time-dependent Navier-Stokes equations. It must

be emphasized, nevertheless, that these equations remain to be

fully tested for completeness by computations. Be that as it

may, the time-averaged information in a turbulent jet is obtained

by solving the time-dependent equations and averaging the

solutions. The prediction of the large-scale motion by LES

requires the computation of the three-dimensional equations,

since the large eddies are highly anisotropic. Thus, while the

circular-jet geometry and its mean-flow characteristics preserve

axisymmetry, such an assumption for LES Is invalid. Within the

constraints of the overall research program, however, the present

predictive research is based upon the two-dimensional

formulation. As regards the small-scale motion, even with our

calculation methodology of LES the smallest scale explicitly

resolved is very much larger than the Kolmogoroff [1940] scale

for viscous dissipation. Thus, while the smallest scales are

truly isotropic and possess universal characteristics, that is

not the case at the (arbitrary) LES cutoff length scale. This

necessitates a closure model for wavenumbers larger than that

corresponding to the LES cutoff, with the consequent

indeterminacy and the ad hoc introduction of turbulence modeling.

The present SGS modeling approach is crude but provides a useful

starting point for the incorporation of a variable viscosity in
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our calculation procedure. These LES and SGS turbulence modeling

approaches are discussed next.

2.1.1 Large-Scale Motion

The initial research effort has addressed the assessment and

analysis of LES procedures with a view to arriving at suitable

schemes for investigating circular-jet turbulence.

The basis for our predictive computation is the viewpoint

that turbulence consists of chaotic motion (with persistent

organized structures) at a range of length scales that increases

rapidly with the Reynolds number. This range of scales stems

from the convective terms of the Navier-Stokes equations. The

entire range of scales can be numerically resolved with no

modification of the convective terms only for sufficiently low

Reynolds numbers (at which complete numerical simulation is

possible with currently available computers, but turbulence can

not be maintained). When the desired scale range exceeds the

lower bound imposed by computer capacity (as in LES), the scales

that are smaller than the LES cutoff are discarded, and the

influence of these discarded scales upon the retained scales must

be modeled. This necessitates the modification of the governing

equations, since the computations involving the unmodified

Navier-Stokes equations and the arbitrary cutoff in the

resolution have no relation to the real fluid physics. This lack

of realism can manifest itself in several ways:

* The numerical algorithm for the unmodified LES equations

can become unstable as the smallest resolved scales

accumulate energy.

* The use of energy-conserving numerical approximations can

lead to a nonphysical equilibrium distribution of the

energy among the finite degrees of freedom.

[51
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* When the viscosity is not zero but is too small to allow

accurate resolutions of the dissipation scales, an

energy-conserving algorithm collects energy at the

smallest resolved scales until there is equilibrium

between the dissipation and cascade rates. Indeed, It

has been demonstrated that this excess energy, trapped at

the mesh scale rather than cascading to the Kolmogoroff

scale, produces too rapid an energy transfer from the

large scales. Such an occurrence can well be expected if

the small scales act on the large scales as an eddy

viscosity with a value (proportional to the length and

velocity scales of the trapped energy) that is enhanced

by the entrapment.

Thus, one of the most important modifications of the Navier-

Stokes equations prior to current LES computation is the

incorporation of terms that provide the mechanism for removal of

energy from the computed scales that mimics as closely as

possible the physical cascade process. This aspect is currently

under Investigation.

Concurrently, LES investigations of an approximate nature

have been initiated for addressing the single free jet issuing

into an unbounded ambient domain. This research Is based upon

the ALgorithms for GAs Equations (ALGAE), which is a general-

purpose computational procedure developed at ICMA. The version

of ALGAE available at the start of this research program is

capable of simulating transient, incompressible or compressible,

laminar flows in two-dimensional planar and axisymmetric

geometries. ALGAE makes use of the dual variable method for

reducing the number of difference equations that need to be

solved at each time interval. The availability of this

particular feature and the potential for extension to address

three-dimensional flows in future have led to our choice of ALGAE

for investigating the large-scale motions, despite our
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recognition of its current limitations in providing true LES of

the circular-jet turbulence. Our present intent has been to

treat ALGAE as a baseline procedure that can be refined and

optimized for the problem at hand through successive

implementation of a number of modifications. The modifications

addressed during this research are discussed subsequently.

2.1.2 Small-Scale Motion

Several essential requirements must be met by the SGS

turbulence model, if it Is to provide the correct asymptotic

decoupling from the LES computations. To start with, SGS

model(s) must satisfy certain matching requirements at two

distinguished limits of wavenumbers. These arise from the fact

that the essential physics of turbulence is continuously

distributed over the entire spectrum o& wavenumbers, ranging from

k = 0 to k = kd (k d is the dissipation wavenumber corresponding
to the Kolmogoroff microscale, and wavenumbers exceeding kd
belong to the realm of molecular motion and do not concern us),

whereas the division of wavenumbers (or length scales) into

"large eddies" and modeled "subgrid quantities" is simply

arbitrary. Thus, the SGS model prediction must merge smoothly to

the "laminar" limit at k d on the one hand, and to the "grid-size"

limit K (which is the largest resolvable wavenumber in LES) on

the other. Unfortunately kg can, and often does, change with
available computing power (and also when, for example, the

numerical resolution is doubled or halved). Therefore the SGS

model predictions must also remain Invariant of these macroscopic

changes, when they are coupled to the LES computations.

SGS model(s) must go beyond the mere matching requirements.

It is essential that they also provide for the phenomenological

effects of the laminar viscosity, diffuslvlty, etc. (which

represent the averages over the molecular dynamics).
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Furthermore, additional coefficients of viscosity, diffusivity,

etc. for the eddy motion are seen to arise from the averaging

over the unresolved wavenumbers (that are bounded from below by

k and from above by kd). The effects of thesp coefficients on

the large-scale motion must be incorporated as well by the SGS

model. The model(s) must, of course, predict the onset of

initial instability and its subsequent growth in an erstwhile

laminar flow, with an increase in the parameter _- Darameters of

interest (e.g., Reynolds number). Finally, the model must be

computationally efficient when it is coupled to the LES

procedure.

The nature of small-scale motion could be further elucidated

by examining an important field variable of turbulence. This is

the local dissipation rate per unit mass defined as z= (P/2)

(aui/ax i + au /ax) 2, where e is averaged over volumes of O(L), L

being the energy scale of motion, with L ) 1/k ; x and u denote

the coordinate and velocity, and Y = p/p is the kinematic

viscosity, with p and # respectively denoting the mass density

and molecular viscosity coefficient. A characteristic property

of turbulence is that z Increasingly varies with increasing

Reynolds number. This random character of e was suggested by

Kolmogoroff [1962] and Obukhoff [1962] in a refinement of

Kolmogoroff's original hypotheses [1940]. They argued that s

should not only be random but that its distribution be lognormal.

Yaglom [1966] demonstrated that the assumption of a cascade

process of energy transfer from the very large- to the very

small-scale motions implies that ln(s) should be Gaussian if the

transfer stages are statistically similar and independent. This

lognormality prediction by Kolmogoroff, Obukhoff, and Yaglom has

" been subsequently verified by a number of experimental

investigations. Thus, while the large-scale motions are properly

treated deterministically through LES, the SGS turbulence

model(s) must be treated statistically.
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Moreover, if SGS turbulence is the key for a proper LES

computation, the key for an acceptable SGS model is its ability

to predict a return of energy from the subgrid scales to the

large eddies. This return of energy would appear to necessitate

new "de-averaging" models when the predictive calculations

involve explicit computation for LES and modeling for SGS

turbulence. This aspect could become crucial when a vortex which

is subgrid somewhere (e.g., sufficiently far downstream from the

jet origin) needs to be explicitly revolved elsewhere (e.g.,

where the grid is finer), since this implies the re-emergence of

a structure from the SGS model into the resolved region of LES.

2.2 ACCOMPLISHMENTS

The different aspects of the large- and small-scale motions

addressed by the present research are briefly discussed next.

2.2.1 SGS Modeling Procedure

Current effort is focused on one-point closure models. It

is worth noting that most of the closure models attempted to date

are either one-point or two-point models (depending on the number

of spatial points appearing in the desired statistical results).

Although the two-point closure models are much more complicated

and have been limited so far to homogeneous (and usually

isotropic) flows, their application to the circular-jet

turbulence is clearly warranted. Our initial effort, however,

has considered one-point closure models. The main motivation for

considering the candidate model is to facilitate the

incorporation of a variable-viscosity capability in ALGAE and to

provide for a basis of benchmark comparison with a more

sophisticated one-point model and possible two-point models that

will be considered subsequently in our research.

[9]



As noted earlier, the averaging over the subgrid scales

introduces a coefficient of viscosity for the eddy motion. Thus,

the effective viscosity pu involved in the LZS computations could

be considered as the sum of the molecular viscosity of the fluid

u and a turbulent eddy viscosity #t' The candidate model for

determining p t is the algebraic mixing-length model due to

Launder et al. [1972]. The formulation discussed here applies to

axisymmetric free-shear flows with monotonic velocity profiles.

The velocity is the maximum at the centerline and decreases

monotonically in the radially outward direction. Thus, no

recirculating flow with an inflection point in the velocity

profile can be considered. Clearly, this model is appropriate

for addressing the single round free jet. This mixing-length

model is one of the three turbulence models implemented by Cline

[1981] in the VNAP2 procedure for solving the two-dimensional,

time-dependent, compressible, turbulent flow.

The eddy viscosity, according to this model, is given by

Pt W p'2 E (aw/ar)2 + (au/az) 2],/2

where u and w are the radial and axial velocity components, r and

z are the radial and axial coordinates, and I is the mixing

length. For monotonic velocity profiles, mixing length is

expressed as

I - CIr 2 -r1 ,

where C Is a constant (- 0.11 for axisymetric flows), and r2 and

r1 are radii that correspond to certain arbitrary values of

normalized axial velocity. Thus,

r 1  = r for (w-win)/(wax-wi n ) - 0.1,
and

r - r for (w-Wmin)/(Wnax-%W in) - 0.9

[10]
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Here "min and wmax denote the minimum and maximum axial velocity

components of the monotonically decreasing velocity profile. For

the round jet of our interest, wmax is the centerline velocity at

a particular axial (z) location. For the jet issuing into

quiescent ambient, "mi n is zero. For computational expediency,

however, a nonzero value of 0.01 Wmax (i.e., 1.0% of the

centerline velocity) is appropriate.

With the typical boundary conditions on the centerline

(viz., u-o and aw/ar-o, invoking symmetry), the equation for t

must be modified on the centerline. This is done by replacing

the previous equation with

Pt " p, 31a2/ar 2

on the centerline.

2.2.2 ALGAE Modifications

The Initial effort Involving LES computations with ALGAE has

focused on certain modifications aimed at improvement in physical

modeling and code enhancements. The former aspect includes the

incorporation of a variable eddy viscosity and the refinement of

spitial resolution. The latter aspect Includes vectorization and

graphic display enhancements.

The variable eddy viscosity in ALGAE is determined from the

algebraic mixing-length turbulence model discussed in the

previous paragraph. Test computations have been in progress at

ICKA to discern the influence of the variable eddy viscosity on

the flowfield predictions.

ili



The earlier version of ALGAE had a maximum number of 4800

finite-difference grid points for the two-dimensional

computational domain. This has been increased to 6400 and is

expected to result in more refined simulations of the large-scale

motions.

The ongoing vectorization involves the conversion of ALGAE

(originally written for DEC 1099) for operation on the FPS-164 at

ICMA and the CRAY-XMP at the NSF Pittsburgh Supercomputer Center.

Further optimizations for the CRAY are in progress.

Predictive calculations of the circular-jet turbulence with

LES computations and SGS turbulence modeling can be greatly

facilitated by the availability of enhanced graphic display

capability. An appealing option is the computer-generated movie

of the evolving flowfield. The software necessary to generate

such 16mm movies using the ICNA Datagraphic Communications Unit

has been developed and is currently being tested.

2.2.3 Far-Field Boundary Conditions

The specification of boundary conditions for the numerical

computation of the free-jet development presents many

difficulties. Ideally, our interest is the solution to the

problem of the jet discharging into an unbounded domain.

However, the present ALGAE-based approach requires that the

problem be transformed into a pseudo boundary-value problem

within the domain of the computational grid. For instance, since

ALGAE is limited to treating confined flowfields, it is necessary

to impose far-field conditions on certain artificially introduced

boundaries.

Initial numerical simulations have centered on a model jet

problem whose geometry is shown in Figure 1. The dashed lines R

and T represent the pseudo boundaries in the quarter plane. Of

[12]



T

R

Figure 1. Model Jet Problem Geometry.
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the variety of conditions tested so far, specification of the

pressure on these boundaries appears to yield the most realistic

behavior of the numerical solution. Appropriate pressure

distributions may be obtained by assuming that the far-field

conditions are approximately those of related model problems for

which analytical solutions are known. For example, a linear

distribution results from a Poiseulile flow-type assumption.

Another possibility currently under consideration (Porsching

[1986a]) Is to use the pressure field corresponding to

irrotational flow of a jet with free stream lines. This is a

classic problem of a type first considered by Helmholtz [1868]

for the flow out of a slot (plane jet). Its solution has been

reproduced in many hydrodynamics texts (see, for example, Milne-

Thompson [1955]). The solution technique uses a sequence of

Schwarz-Christoffel transformations to obtain an implicit

representation of the complex potential of the motion.

Bernoulli's theorem may then be employed to relate the far field

pressure on streamlines within the jet to the known pressure at

infinity. Plots of the streamline and velocity fields resulting

from an application of this technique to the plane-jet case may

be seen in Porsching [1986a]. Analogous treatment of the

circular jet remains to be carried out.

Another approach to obtain the far-field pressure

distribution is through an asymptotic analysis of the fully

developed region of the axisymmetric turbulent jet. A useful

start is provided by the results of ongoing research of Bush and

Krishnamurthy (1986] which have been shown to be consistent with

the experimental results of Reichardt [1942] and theoretical

results of Gortler [1942].

2.2.4 Weakly Dissipative Difference Methods.

Sustained numerical simulation of the vortex structures In

the flowfield of a circular jet requires the use of difference

(14]



methods with small numerical dissipation. Unfortunately, in the

absence (or near absence) of naturally occurring dissipative

mechanisms, it is precisely the numerical viscosity that

stabilizes the method. Thus, it is important to examine the

prospect of constructing methods that are robust (with respect to

their stability characteristics), but not uniformly overly

dissipative.

A conceptually simple way to attenuate the dissipative

effects of a difference method is to create a hybrid method by

blending the given method with a loes robust but more accurate

one. The idea is to design the weights used in the blending

process so that In regions where little numerical dissipation is

needed, the accurate method is dominant, whereas in regions

requiring significant numerical dissipation to preserve stability

(or certain qualitative features of the solution such as

monotonicity), the original scheme prevails. Such self-adjusting

methods in computational fluid dynamics were apparently first

considered by Harten and Zwas (1972], and a comprehensive account

of the steps involved in the design of these methods is contained

in the thesis of Wildere [1983].

Hybridization is also the notion behind the Flux Corrected

Transport (FCT) schemes of Boris and Book [1973, 1976] and Book,

Boris, and Hain (1975). The FCT schemes, originally developed

for one space dimension, were given a nontrivial multidimensional

generalization by Zalasek (1979). He also showed that they could

mum be interpreted in terms of convex combination of flux terms

related to low-order (strongly dissipative) and high-order

(marginally dissipative) difference methods. The FCT weight

selection process uses a "monotonicity constraint" on the

numerical solution and has a particularly simple formulation in

one dimension. Specifically, the weights are determined so as to

maximize the effect of the high-order method's flux terms,

subject to the condition that over any timestep no extrema are

introduced that would not also be present in the low-order

i , . .......i "'mI~imi~~lliilil I(1i53



solution at the new time. This Implies that the total variation

of the hybrid grid function does not exceed that of the low-order

grid function. The same idea has been used to define total-

variation-diminishing (TVD) schemes (Harten [1983], [1984]).

The monotonicity constraint is consistent with the behavior

of a solution of the one-dimensional scalar convection equation

(the total variation of such a solution does not increase in

time), and in this case the FCT algorithms perform impressively.
However, the situation is different for systems of nonlinear

conservation laws. According to Woodward and Colella [1984]:

Then no such monotonicity constraint is implied by

the differential equations, and the use of such a

constraint can lead to difficulties. In

particular, a smooth region with strong gradients

can be turned into a sequence of discontinuous

Sjumps, with the appearance of a staircase.

The unsuitability of a TVD condition in the design of difference

methods for multidimensional quasilinear systems is also

indicated by a recent result of Rauch (1986]. There it is shown

that unless the commutators of all of the Jacobian matrices

appearing in the system vanish, no multiple of the W1'i seminorm

of the initial condition can bound this seminorm at a later time.

Thus, it is unlikely that a numerical solution with a TVD

property will converge to a solution of the original system.

In view of these difficulties with the TVD condition, it is

appropriate to consider other weight selection criteria. One

such alternative is based on the ability of the hybrid method to

conserve (or nearly conserve) the discrete energy of the

numerical solution that it produces. For the simple (constant

coefficient) convection equation

ft + uf - 0
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in which the stable upwind-difference method is blended with the

unstable centered-difference method, this leads to a hybrid

method with the single weight 9 given by the formula

9 - 12A - 1 + (1 - 4A 2 )1 / 2 1/2A,

where A is the Courant number.

When applied to a standard square wave test problem, the

resulting scheme produces a numerical solution that virtually

coincides with that of the Lax-endroff and leapfrog scheme.

This hybrid method is not TVD, but does reduce the numerical

dissipation of the upwind method by about 21%. Furthermore, for

this problem it appears possible to modify the analysis to permit

weights that depend on the local character of the numerical

solution (Poraching (1986b]). In this way TVD-like properties

might also be incorporated into the method.
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